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SUMMARY 
A new improved strongly implicit procedure (SIP) is presented for solving large sets of transonic streamfunc- 
tion equations with matrix of coefficients [B]. This algorithm has several advantages over those now in-use. 
First, Stone's auxiliary matrix [BJ is non-symmetric, while in the present scheme the auxiliary matrix [B] is 
symmetric and the matrix [B + B] is positive definite and symmetric when [B] is a symmetric matrix. This 
ensures the numerical stability of the iterative algorithms. Secondly, for an appropriate choice of iterative 
parameter w, the rate of convergence of the new iterative procedure should be faster than the original SIP 
scheme. 

Numerical results of the blade-to-blade flows are given with the present scheme. It is shown that the 
algorithm is efficient and robust. 
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INTRODUCTION 

The most commonly used methods solve the transonic flow equations with either a time- 
dependent formulation or a time-like relaxation procedure. In general their convergence to a 
steady state solution is costly in time steps. Other methods have been devised to solve the steady 
flow problem directly as a large implicit system so that signals are felt at all points simultaneously. 
A difference equation is written for each grid point and the resulting set of simultaneous equations 
must be solved by using direct or some iterative means. In the present paper the transonic 
streamfunction equation for the steady relative flow problem is solved by the use of artificial 
compressibility. A new improved SIP scheme is used in numerical solutions of this set of 
equations. 

STREAMFUNCTION EQUATION AND ARTIFICIAL COMPRESSIBILITY 

In the present study the fluid is assumed to be an inviscid perfect gas. The flow is steady. Fluid 
velocities are taken relative to a rotating relative co-ordinate system (x3, x', x') which has 
constant angular velocity relative to the inertial and absolute cylindrical co-ordinate system 
(r ,  4, z). The (x3, x', x') co-ordinate system used is shown in Figure 1. The x3-co-ordinate is in the 
streamwise direction while x2 is in the circumferential direction. To calculate the flow along the 
blade-to-blade surface, it is convenient to take co-ordinates (x3, x') on the surface and x' normal 
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Figure 1. Curvilinear co-ordinates on blade-to-blade surface 

to the surface. Then the fundamental form of the streamfunction equation on the blade-to-blade 
surface in (x3, x2) co-ordinates may be written 

or 

where 

Here w3 and W 3  are respectively the contravariant component and the contravariant physical 
component of the relative velocity vector in the x3-direction, g33 is the covariant metric tensor, 
I is the relative stagnation rothalpy of unit mass of gas and T denotes the normal distance between 
two adjacent blade-to-blade surfaces, (its value is known in the present study). For transonic flow 
it can be shown that equation (2)  is a mixed-type equation; that is, in the subsonic region it is an 
elliptic equation but in the supersonic region it is a hyperbolic equation. In order to introduce the 
necessary artificial viscosity to ensure stability and the capture of a shock wave, the density in 
equation (2) must be replaced by the corresponding artificial density 3 (e.g. see Reference 6). 
Therefore the principal equation in the streamfunction can be written in the following form: 
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where 

DISCRETIZATION AND STONES SIP 

Standard finite differences are used in discretizing equation (4), namely central differencing 
everywhere, leading to a large system of non-linear algebraic equations in the unknown 
streamfunction values at the grid points. At each interior point (i, j )  the algebraic equation can be 
put in compact form as follows: 

~;;j@+l!) + B^*,,j (a) t$+ + @; <y1lf) + q)) t;;;-y + B^g,)) g;+y = It!:!, ( 5 )  

where (("+l = $("+I) - $(") and l$" is the residual at iteration level n. The matrix form can be 
written as: 

[ B p  { t > ( n +  1) = { R > ( n ) .  (6) 

A direct inversion of the five-point operator is not economical, therefore the resulting five- 
diagonal system of equations is solved by using Stone's strongly implicit procedure (SIP). Stone's 
auxiliary matrix [B]  can be put in compact form as fo l l~ws :~  

Here a is a sequence of constants given by 

at = 1 - (l-amax)L'(N-l) ( l =  0, 1,2, .  . . , N - 1). (74  

In equation (7a), N and amax are user-specified constants. In equation (7), the subscript of al is 
omitted. It is a relaxation factor cyclically varied between the limits 0 d a < a,,, < 1 during 
iterations. The numerical molecule associated with the matrix [B + B'] is shown schematically 
in Figure 2. 

Using the above definitions, equation (6) can be put in the following form: 

[B + B ] ( n )  { t > ( n +  1) = {a>@). (8) 

Replacing [B + B'] by LU results in 
LU{<}@+l) = {a}'"' (9) 
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i-1 i i+l 

Figure 2. Numerical molecule associated with matrix [B + B'] 

NEW APPROACH AND SYMMETR-IC AUXILIARY MATRIX 

If we express the matrix [B] as 

[B] = $( [B] + [BIT) + $( [B] - [BIT) [B] + [B], (12) 

where [B] E 3( [B] + [BIT), it is a symmetric matrix and [B] is non-symmetric. Let 

{R}(n) {R}(") - [B](") {t}("). (13) 

[B](n){c}(nfl) = {R}(n) (14) 

(15) 

Then equation (6) becomes 

or 

q:;tm-+,y + B*I,jtI., ( n )  !".+I) + Bj"'ty:i!j + Bg!j(!;:/j + Bhi,j5i,j+l n) = R I O .  

The coefficient matrix [B] and the numerical molecule associated with it are shown in Figure 3. 
As a starting point in our study of the symmetric auxiliary matrix, let us consider any 

symmetric matrix [A]  and its numerical molecule (see Figure 4). Clearly, the basic properties of 
the matrix [A]  are given by 

j = (A,)i, j -  1 

(A2)i.j = ( & ) i + l , j - t  (16) 

(A3)i.j = ( A 5 ) i - l . j  

It is important to note that this notation does not conform to standard matrix notation; the 
subscript ( i , j )  refers to the grid system used in setting up the difference equations rather than to 
the location within the matrix. In the present study we present a new symmetric auxiliary matrix. 
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Figure 3. Matrix [B] and its numerical molecule 

i - 1  i i+l 

Figure 4. Matrix [ A ]  and its numerical molecule 

This matrix is defined as follows: 

[B] = 
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It satisfies the properties of (16). In equation (17) the coefficients q j ,  b i , j ,  c ~ , ~ ,  etc. may be 
determined by the following relationships: 

a .  1 ,  J . = B  l i , J  -ab i , i - l e i - l , i - l ,  
b. 1.J = B si,, - c ta i - l , j d i - l , j - , ,  
C i , j = B  2i.j + c ~ ( a ~ - ~ , ~ d ~ - ~ , ~ - ~  + b i , j - l e i - l , j - l ) - a i , j e i , j - l  - b i , j d i - l , j ,  

di, j = (Bga,, - aa. i , j  .d .  i , j -1 ) /C i , j ,  . 

e.  1.1 . = ( B 3 , ,  l . J  - u b i , j e i - l , j ) / C i , j .  

(184 
(18b) 
( 18c) 
( 1 8 4  
(184 

Here a= 1 is chosen in the present investigation. Therefore the matrix [B] is a real, symmetric and 
positive definite matrix. By using factorization techniques, the matrix [B + 81 has the LU 
decomposition, i.e. 

L =  

U =  

where the coefficients q j ,  b i , j ,  etc. are defined by the relationships (18) 
The matrix L has non-zero elements in the diagonals corresponding to the B,,  B, and B, 

diagonals of the matrix [B] shown in Figure 3. The matrix U has non-zero elements in the 
diagonals corresponding to B,, B, and B,, with those corresponding to B,, the principal 
diagonal, being everywhere equal to unity. Let D 5 diag(Ci, j )  be the diagonal matrix whose 
diagonal entries are ci, j ;  then 

(19) L = UTD, 
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where UT is the transpose of U. Therefore 

[B + B] = LU = UTDU = (diag(JCi,j)U)T (diag(JC,, j)U) E NTN. (20) 
The matrix [B + B] is a positive definite matrix; if [B] is symmetric, then [B + fi] is symmetric 
too. 

CONVERGENCE PROPERTIES OF THE ITERATIVE SCHEME 

Let 

r &(") r(n) - 

and consider the iterative scheme 
E(") = M &(" - 1 )  

0 , 
M, z I - w(B + fi)-'B, 

Q = (B + B)-'B, 

where I is the identity matrix and d") is the error vector for the nth iterate. As we know, the error 
vectors E(") of the iterative methods tend to the zero vector if and only if the spectral radius p(M,) 
is less than unity. Clearly, if the matrices [B] and [B + B] are positive definite matrices and 
[B + B] is non-singular, then (B + B)-'B is a positive definite matrix too and thus its eigen- 
values are positive real numbers. If w satisfies 

then for all k, 

I&[I-aQ]I < 1 7  (26) 

where Ak[P] is the eigenvalue of index k associated with the matrix P; Ama,[Q] represents the 
maximum eigenvalue among 1, [Q], A2 [Q], . . . , & [Q], . . . . In other words, the spectral radius 
p(M,) is less than unity when w satisfies equation (25). Then the iterative procedure tend to the 
zero error vector, i.e. the scheme is convergent. 

The optimum relaxation factor may be determined as follows: 

2 
Amax CQI + Amin CQ1 Wopt = 

It may be noted that the value of wept is not sensitive to the computational results, so that the non- 
optimal relaxation factor (i.e. the iterative parameter w)  is used in the following calculations. 

NUMERICAL SOLUTION PROCEDURES 

The solution procedure consists of two steps, namely: 
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where j:''; is an intermediate result stored at each mesh point. In order to close the system, the 
f!;; ') and <!;: ') are set to zero on whole boundaries. 

By using a first-order partial differential equation (PDE) for the density derived from the 
continuity equation, the momentum equation and the energy equation,' the density field is 
obtained. With this method, the problem of non-uniqueness of the density in the traditional 
streamfunction method is avoided. 

NUMERICAL RESULTS 

The method described above has been used to calculate a number of blade cascades. The first test 
example is computation of a T I  - (18A6I,,)08 cascade with a 50 x 1 1  mesh. The inlet Mach 
number is 0.658 and the inlet angle 30". The relative pitch is t= 1.5. If a fall in the residual by 
three orders of magnitude is taken to be the convergence criterion, convergence in this case is 
achieved in approximately 36 iterations. The original SIP reaches this level in 48 iterations. In this 
case the flow field is a simple subsonic flow and the convergence speed is quite fast.The velocity 
distribution obtained is compared with the experimental data' in Figure 5. The agreement is very 
good. In the calculation procedure the relaxation factor w is chosen as 0.6. 

The second example is for a DCA 2-8-10 cascade with a 50 x 11 mesh. The inlet Mach number 
is 1.03 and the inlet angle 61.8". The relative pitch is f =  0.85 and P2/PI is chosen as 1.29. In this 
case the flow field is a transonic flow. On the basis of a three-order-of-magnitude fall in maximum 
residual, the improved SIP and original SIP reach this level in 77 and 93 iterations respectively. In 
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Figure 5. Surface Mach number comparison 
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Figure 6. Pressure distribution around blade and comparison with experimental data 
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Figure 6 the pressure distributions around the blade obtained by the present method are shown. 
The results of the calculations are seen to agree with the experimental data' fairly well. Note that 
the axial velocity density ratio R' must be considered. In the calculation procedure a value of 1.05 
is taken for nl. 

In Reference 10 the flow field within a transonic axial compressor rotor designed for a total 
pressure ratio of 1.51 at a relative tip Mach number of 1.4 and 100% speed with a mass flow of 
16.8 kgs-' has been measured by a laser velocimeter. There are four distinctly different types of 
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Figure 7. Surface pressure distributions (18% span) 
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Figure 8. Surface pressure distributions (45% span) 
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Figure 9. Surface pressure distributions (68% span) 
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flow field existing simultaneously along the span. These are: (1) a subsonic inlet with a local 
supersonic region at 18% blade height; (2) a slightly supersonic inlet with a detached shock at 
45% blade height; (3) a moderate supersonic condition with a strong attached shock at 68% 
blade height; (4) a higher supersonic inlet Mach number with a weak oblique-normal shock at 
89% blade height. 

In this paper the present algorithm was applied to calculate the above four flow fields. Figure 7 
defines the surface pressure distributions at 18% span; the computed boundary conditions on the 
section are inlet Mach number M ,  = 0922, relative air angle measured from the tangential 
f l ,  = 35.41, P,/P, = 1.438. Figure 8 defines the surface pressure distributions at 45% span; the 
computed boundary conditions are M ,  = 1.086, f l ,  = 31.59, P,/P, = 1.558. The surface pressure 
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Figure 10. Surface pressure distributions (89% span) 
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Figure 11. Mach number contours (89% span) 
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distributions at  68% span are shown in Figure 9; the computed boundary conditions are 
M ,  = 1.217, p, = 28.08, P2/P1  = 1.615. Figure 10 defines the surface pressure distributions at 
89% span; the boundary conditions are M ,  = 1.307, p1 = 24.04, P2/P1 = 1.63. 

It is clear from these figures that the computed and measured surface pressure distributions are 
essentially the same. In our computations, converged surface pressure distributions were obtained 
in about 72, 81, 118 and 136 iterations for the above four sections respectively. The results 
indicate that the present algorithm converges very rapidly to a reasonably accurate solution. 
Figure 11 defines the flow field at 89% span. The calculated result agrees with the experimental 
data" fairly well. 

It should be noted that the preceding results, which are obtained at different spanwise stations 
using the blade-to-blade surface calculation, are based on the geometrical shape of the blade-to- 
blade surface and the distributions of normal thickness of the surface. In the present study the 
shape of the surface and the distributions of z are known; they are derived from through-flow 
calculations on the hub-to-tip mean stream surface located somewhere in the midpart of the flow 
passage. The problem of the through-flow calculations will not be pursued here. 

CONCLUDING REMARKS 

An algorithm has been developed that is capable of treating practical transonic cascade flow. 
Since the auxiliary matrix [B] is positive definite and symmetric and the coefficient matrix [B] of 
the difference equation for the streamfunction equation is symmetric, we are ensured of obtaining 
reliable converged solutions. For an appropriate choice of iterative parameter o, the rate of 
convergence of the new improved SIP should be faster than that of the original SIP. The 
numerical results suggest that the present algorithm is efficient and robust for calculating 
transonic cascade flow fields. 

APPENDIX: NOMENCLATURE 

. . .  , A, ,  coefficients of streamfunction equation 
right-hand-side term of equations (l), (2) and (4) 
Stone's auxiliary matrix 
auxiliary matrix in present scheme 
covariant metric tensor of xi co-ordinate system 
enthalpy of unit mass of gas 
relative stagnation rothalpy, [ h  - (Qr)2 /2]  + ( W ) 2 / 2  
meridional co-ordinate for blade-to-blade surface of revolution 
cylindrical co-ordinate system 
entropy of unit mass of gas 
absolute temperature (K) 
relative velocity of gas 
(x3, x2, x ' )  curvilinear co-ordinates 
co-ordinate along machine axis 
density of gas 
artificial density 
angle between Z and 1 

angle between x3 and x2 co-ordinate lines (angle included by x3 and x2 
co-ordinate lines) 
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II/ 
w 
n 
sz’ 

streamfunction 
relaxation factor 
angular velocity of rotating rotor 
axial velocity density ratio 
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